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Introduction:  In [1], we identified a process 
whereby chondrule-sized particles are sorted by nebula 
gas turbulence into narrow size distributions based on 
their aerodynamic stopping time ts, and locally concen-
trated by orders of magnitude relative to the average 
particle mass density. We speculated that these high 
degrees of mass concentration led directly or indirectly 
to primary accretion of primitive bodies directly from 
these size-sorted components – perhaps helping us 
understand the properties of primitive chondrites (see 
also [2]). Key open issues include (a) the local damp-
ing of nebula turbulence by particle mass loading, 
which tends to limit the degree of concentration;  (b) 
the generally unrealized difficulty of collapsing even 
extremely dense clumps of small particles under self-
gravity, and (c) the 1-2 Myr  duration of planetesimal 
formation, suggesting a temporally extended, and thus 
inefficient, process.  We have taken several steps to-
wards understanding these issues, and here sketch the 
outline of a scenario that might lead to observed kinds 
of primitive bodies on observed timescales.  

The Cascade Model:  To address issue (a), the 
role of particle mass loading, and to obtain the occur-
rence statistics of clumps having the density and size 
needed to address issues (b) and (c), we developed a 
cascade model which simultaneously treats the local 
particle mass density C and the local vorticity ω (ex-
pressed as enstrophy S =ω2). Work by ourselves and 
others [3] has shown that regions of high particle mass 
density avoid fluid zones of high enstrophy. A cascade 
model (see figure 1) mimics the statistics of a full 3D 
fluid model by using statistically defined multipliers m 

Figure 1: Schematic showing one bifurcation of a cascade model in 
which the properties C and S are sequentially repartitioned into 
smaller parcels or sub-eddies using the statistically determined mul-
tipliers mS and mC. The parameter Γ accounts for the spatial anticor-
relation of C with S ([4]). 

with some probability distribution (PDF) p(m). Both C 
and S have their own set of p(m). In [4], we showed 
that p(m) is actually also a function of C: i.e., p(m|C) 
(figure 2).  Here, C = ρp/ρg, the ratio of particle mass 
density to gas mass density. The multiplier PDFs can 
be very well fit by analytical functions of a single pa-
rameter; narrower p(m|C) - peaked at 0.5 - lead to un-
changing C and S, because partitioning 50% of C or S  
into a partition half the original size results in no 
change in its local value. In this limit turbulent concen-
tration reaches an asymptote. Mass loading has very 
little effect until C > 10, but when C >100, multiplier 
PDFs become so narrow that little further increase in 
local C is possible. 

Figure 2: The PDFs of mS and mC (inserts) vary with local mass 
loading C. The PDFs can be described by an inverse width parameter 
and become narrower as C increases. Increasingly narrow PDFs 
result in an asymptotic limit for C of approximately 100.  
           
     We then used these conditioned multiplier PDFs 
(figure 2) in cascade models to obtain the global joint 
PDFs of particle concentration and local fluid vorticity, 
P(C,S). Each P(C,S) is associated with some number of 
bifurcations, which is in turn identified with some spa-
tial scale in a broad inertial range of scales at some 
nebula Reynolds number (or viscosity parameter α). 
Cascade model PDFs were compared with actual DNS 
simulations over their overlap range, and good agree-
ment was found. For details the reader is referred to 
[4]. Cascade models were then generated for much 
larger Reynolds numbers, comparable to plausible 
nebula values; typical results are shown in figure 4 
below. The contours of P(C,S)CS are effectively vol-
ume density of the nebula occupied by particle clumps 
of the given mass loading, at the given local vorticity. 
Naturally, most of the volume is at low (canonical) 
mass loading and normalized S~1. The various straight 
lines represent different stability or instability thresh-
olds, above which dense clumps become bound objects 



and can evolve towards actual planetesimals. 

 
Figure 4: Typical PDFs expressed as the product P(C,S)CS, the 

volume density for a region having (C,S), in a nebula where the 
average background mass density of solids is enhanced by a factor of 
10 over the canonical nebula value Ao (for purposes of illustration).  
The diagonal line is the traditional gravitational instability threshold. 
The horizontal lines are stability thresholds against disruption by 
nebula headwinds, functions of the diameter of the clump l and the 
nebula turbulent intensity α.  

Stability and instability of dense regions:  Gravi-
tational instabilities (GI)  have long been advocated in 
the context of a dense nebula midplane [5-8]; even 
mild nebula turbulence precludes sufficient particle 
settling for GI to occur near the midplane as usually 
envisioned, but it is in principle applicable wherever 
dense zones form. GI is usually thought to lead to a 
rapid collapse of a dense region on the dynamical time 
tG = (Gρp)-1/2, where G is the gravitational constant, 
typically on the order of an orbit period, faster than the 
constituents of the clump can be dispersed. This 
threshold is shown by the diagonal line in figure 3.  

 However, this is not the case in the chondrule-
sized particle regime (see [2] for a more detailed dis-
cussion). It was first shown by [6], but apparently ne-
glected by all subsequent workers until we recently 
encountered it in our own numerical modeling work, 
that dense clumps in which ts << tG cannot collapse on 
the dynamical timescale, but can only sediment to-
wards their mutual center on a much longer timescale. 
This is because the particles, in attempting to collapse, 
compress the entrained gas until it acquires an outward 
pressure gradient that stalls the collapse of both the gas 
and the entrained particles. Chondrule clumps are 
squarely in this regime; thus while the dense clump 
does remain bound ([6] called this state an “incom-
pressible mode”), it remains vulnerable to processes of 
disruption for the hundreds of orbits required for slow 
inward sedimentation to occur.  

 Indeed there is one obvious disruptive process 
which acts on the several-orbit timescale: the ram pres-

sure due to the differentially-rotating nebula gas. For 
an object with no internal strength, this relative veloc-
ity of ΔV ~ ηVK , where η ∼ 10-3, is quite potent and 
capable of disrupting dense clumps after less than 2 
orbits (figure 5). 

 
Figure 5: Front (left pair) and side (right pair) views of particle 
clumps experiencing nebula gas ram pressure without (top pair) and 
with (bottom pair) the benefit of their own self-gravity, after 1.75 
orbits. The circle in the top left panel shows the initial diameter of 
the clump. The nongravitating clump is being disrupted, while the 
gravitating clump is retaining its integrity and slowly shrinking even 
while spalling off a small number of particles.  

Figure 5 shows clumps with a combination of pa-
rameters which are indicated to be transitional by a 
simple analytical model we have developed, which is 
analogous to the Weber number criterion governing the 
stability of fluid drops settling through less dense me-
dia and is of the form C l >ηa(ρR/We*ρg)1/2 , where a 
is the distance from the Sun, ρR and ρg are the Roche 
density and local gas density, and We* is some critical 
constant of order unity (to be determined numerically). 
In the traditional application (ie., raindrops) the restor-
ing force which stabilizes the drop against ram pres-
sure is surface tension; in our case it is self gravity. 
Thus it appears that issues (a) and (b) of the Introduc-
tion can both be understood. Whether, under the C < 
100 constraint set by mass loading, clumps having 
large enough size l to survive ram pressure in regions 
characterized by η occur sufficiently often to satisfy 
issue (c) of the introduction, will be established using 
results such as shown in figure 4. Preliminary indica-
tions are promising but considerable work remains.  
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